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A machine learning analysis of a “normal-

like” IDH-WT diffuse glioma transcriptomic
subgroup associated with prolonged
survival reveals novel immune and
neurotransmitter-related actionable targets
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Abstract

Background: Classification of primary central nervous system tumors according to the World Health Organization
guidelines follows the integration of histologic interpretation with molecular information and aims at providing the
most precise prognosis and optimal patient management. According to the cIMPACT-NOW update 3, diffuse
isocitrate dehydrogenase-wild type (IDH-WT) gliomas should be graded as grade IV glioblastomas (GBM) if they
possess one or more of the following molecular markers that predict aggressive clinical course: EGFR amplification,
TERT promoter mutation, and whole-chromosome 7 gain combined with chromosome 10 loss.

Methods: The Cancer Genome Atlas (TCGA) glioma expression datasets were reanalyzed in order to identify novel
tumor subcategories which would be considered as GBM-equivalents with the current diagnostic algorithm.
Unsupervised clustering allowed the identification of previously unrecognized transcriptomic subcategories. A
supervised machine learning algorithm (k-nearest neighbor model) was also used to identify gene signatures
specific to some of these subcategories.

Results: We identified 14 IDH-WT infiltrating gliomas displaying a “normal-like” (NL) transcriptomic profile associated
with a longer survival. Genes such as C5AR1 (complement receptor), SLC32A1 (vesicular gamma-aminobutyric acid
transporter), MSR1 (or CD204, scavenger receptor A), and SYT5 (synaptotagmin 5) were differentially expressed and
comprised in gene signatures specific to NL IDH-WT gliomas which were validated further using the Chinese Glioma
Genome Atlas datasets. These gene signatures showed high discriminative power and correlation with survival.

Conclusion: NL IDH-WT gliomas represent an infiltrating glioma subcategory with a superior prognosis which can only
be detected using genome-wide analysis. Differential expression of genes potentially involved in immune checkpoint
and amino acid signaling pathways is providing insight into mechanisms of gliomagenesis and could pave the way to
novel treatment targets for infiltrating gliomas.

Keywords: IDH-WT, Glioma, Transcriptomic, Biomarkers, Amino acid neurotransmission, Tumor immune checkpoints,
SLC32A1, MSR1, C5AR1, SYT5
© The Author(s). 2020 Open Access This artic
which permits use, sharing, adaptation, distrib
appropriate credit to the original author(s) and
changes were made. The images or other thir
licence, unless indicated otherwise in a credit
licence and your intended use is not permitte
permission directly from the copyright holder
The Creative Commons Public Domain Dedica
data made available in this article, unless othe

* Correspondence: maxime.richer@usherbrooke.ca
3Department of Pathology, Université de Sherbrooke, Sherbrooke, Québec,
Canada
Full list of author information is available at the end of the article
le is licensed under a Creative Commons Attribution 4.0 International License,
ution and reproduction in any medium or format, as long as you give
the source, provide a link to the Creative Commons licence, and indicate if

d party material in this article are included in the article's Creative Commons
line to the material. If material is not included in the article's Creative Commons
d by statutory regulation or exceeds the permitted use, you will need to obtain
. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
tion waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
rwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-020-01748-x&domain=pdf
http://orcid.org/0000-0003-4356-0326
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:maxime.richer@usherbrooke.ca


Nguyen et al. BMC Medicine          (2020) 18:280 Page 2 of 18
Background
Infiltrating gliomas are the most frequent malignant pri-
mary neoplasms of the central nervous system (CNS) in
adults [1]. They are relentlessly recurring and lethal tu-
mors despite aggressive multimodal treatment (chemo-
therapy and/or radiotherapy) [2, 3]. Survival of patients
with infiltrating gliomas is generally short, but a unique
subset of rare cases (5%) survive past 5 years despite be-
ing histopathologically diagnosed as glioblastomas [1, 4].
Histological analysis is now complemented with mo-

lecular information into integrated diagnoses that pro-
vide increased standardization and prognostic reliability,
as recommended in the most recent edition of the
World Health Organization (WHO) classification of tu-
mors of the central nervous system [5–7]. For example,
separate categories have been created based on the pres-
ence of alterations such as isocitrate dehydrogenase-wild
type 1/2 (IDH1/2) [8] and histone 3 mutations, which
are frequently found in adult low-grade and pediatric
high-grade gliomas, respectively [9, 10].
The creation of the consortium to Inform Molecular

and Practical Approaches to CNS Tumor Taxonomy
(cIMPACT-NOW) is an initiative that facilitates the
communication of WHO classification updates to the
neuropathology community [11]. For IDH-WT glioma
grading, the cIMPACT update 3 recommends the assess-
ment of EGFR amplification, combined chromosomes 7p
gain/10q loss, and TERT promoter mutation, which are
established predictors of poor outcome, regardless of
histology [12].
The transcriptome remains underutilized as a diagnos-

tic tool for glioma despite its great potential, as it con-
tains complementary information on transcriptional
events [13] such as RNA alternative splicing. This study
sought to analyze the IDH-WT glioma expression data
from The Cancer Genome Atlas (TCGA) [14] glioblast-
oma multiforme (GBM) [15, 16] and low-grade glioma
(LGG) [17] cohorts, using machine learning algorithms,
as a means to identify novel expression-based signatures
with potential clinical utilities which would also provide
novel insight on gliomagenesis. Unsupervised clustering
identified a subgroup of 14 IDH-WT infiltrating gliomas
out of a total of 238 (5%) displaying what we coin a
“normal-like” (NL) transcriptomic profile associated with
a superior prognosis compared to other subgroups. NL
IDH-WT gliomas are partially comprised in subgroups
described previously in major glioma papers but were
not thoroughly characterized. In our study, we aimed at
better characterizing the epidemiology and molecular
profile of these atypical tumors, with an emphasis on the
coding transcriptome. We identified two gene signatures
composed of SLC32A1/MSR1 and SYT5/C5AR1 gene
combinations whose expression alone strongly correlated
with this subgroup of IDH-WT gliomas.
Methods
Samples
Illumina HiSeq RNASeqV2 data was downloaded from
the NIH GDC Data Portal [18] (https://portal.gdc.can-
cer.gov). Only IDH-WT tumors from the low-grade gli-
oma (LGG-TCGA) and glioblastoma (GBM-TCGA)
cohorts with available expression data were included,
i.e., 144 of 617 cases and 94 of 516 cases, respectively.
Five normal brain control tissues, also downloaded from
TCGA database, were added. Only one sample was kept
for cases with multiple replicates.

Gene expression analysis
The DESeq2 R package [19] was used to identify the dif-
ferentially expressed genes between conditions. Two dif-
ferential expression analyses were performed using raw
HTSeq counts: normal tissues vs cancer tissues (used for
the unsupervised clustering); NL cluster vs OT cluster
(used for the machine learning pipeline).
Differential gene expression was performed by calcu-

lating p values (false discovery rate adjusted, or FDR)
with the DESeq2 R package. Log2 fold changes (FC)
were also calculated, and a specific threshold was se-
lected in order to determine cluster-specific genes: FDR
adjusted p value less than 0.001 and log2 of fold change
greater than 2 or lower than − 2.

Unsupervised clustering analysis of RNA-seq data
RNA-seq Fragment Per Kilobase per Million reads mapped
(FPKM) estimates obtained using HTseq [20] were clus-
tered in an unsupervised manner using the R package
hclust, according to transcript abundance profile similarity.
The dataset was filtered to include only significant differen-
tially expressed genes between normal and cancer samples
(3903 genes with FDR adjusted p value less than 0.001 out
of 19,107 coding genes in total). This was followed by log2
standardization (with a pseudocount of 0.01) and hierarch-
ical clustering using Pearson’s correlation. A heatmap was
subsequently generated with the ComplexHeatmap R pack-
age [21]. Additional file 1: Figure S1 depicts the analysis
pipeline.

Tumor purity calculation
Estimate R package [22] was used to evaluate tumor pur-
ity for each TCGA IDH-WT glioma sample (n = 238).
This tool infers tumor purity from the expression of
stromal and immune cell markers in tumor tissues.

Clinical data analysis
Survival data, made available from NIH GDC Data and
TCGA portals, were analyzed with survival and survmi-
ner R packages [23, 24]. In addition, we performed chi-
squared statistical tests on other clinical data such as age
at diagnosis, gender, and vital status. Relative survival
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curves and log-rank tests were computed for identified
transcriptomic subgroups.

Copy number variation analysis
The GISTIC2 v.2.0 software was used to identify signifi-
cant chromosomal aberrations such as deletions and am-
plifications [25]. Masked copy number variation data for
the different transcriptomic clusters were analyzed indi-
vidually with TCGA GISTIC2 pipeline parameters [18].
Copy number variation (CNV) data associated with Y
chromosomal aberrations in germinal cells were ex-
cluded from this analysis. False discovery rate (FDR)
values were calculated for each chromosomal aberration.

Histological review
Scanned slides from cases included in our cohort of NL
IDH-WT gliomas were reviewed by two Canadian
Board-certified diagnostic neuropathologists.

Machine learning pipeline for gene identification
signatures
Raw HTSeq counts from differentially expressed genes
between normal and cancer samples (3903 genes) used
for heatmap generation were further analyzed for gene
expression comparison between identified transcrip-
tomic clusters. The set was filtered to 3806 genes by
only keeping genes with an expression of at least 1 count
in at least 75% of tissue samples. From this filtered set,
we selected genes that are differentially expressed be-
tween identified clusters associated with a FDR adjusted
p value lower than 0.001 and log2 of fold change greater
than 2 or below − 2.
Pseudocounts of 0.01 were added to the reduced

FPKM expression data, which were then log2 trans-
formed. The dataset was then randomly split into train-
ing and test sets with 80% (190/238) and 20% (48/238)
of all IDH-WT glioma tumor samples, respectively.
From the training set, we extracted relevant genes with
strong discrimination power (Mean Decrease Gini or
MDG, based on Gini index) between the different tran-
scriptomic clusters using random decision forests, taking
the first 50 genes with the best mean of IncNodePurity
values for 100 random forests [26, 27]. Relevant genes
were subsequently subjected to a k-nearest neighbor
(KNN) algorithm [28] (Scikit Learn Python library [29]),
using different gene combinations (combination of 1, 2,
or 3 genes). Stratified cross-validation in 10 folds was
also performed to determine gene combinations that
allow classification of tumors associated with the differ-
ent transcriptomic clusters with a minimized error rate
and a maximized area under the receiver operating char-
acteristic (ROC) curve, specificity, and sensitivity. We
tested gene signatures using the test set, and ROC
curves were generated to compute performance metrics
using the Python package sklearn.metrics.roc_curve [29].
This step is described in Additional file 2: Figure S2.

Validation of gene signatures
The validation was performed using two independent
glioma expression datasets retrieved from the Chinese
Glioma Genome Atlas (CGGA [30]; http://www.cgga.
org.cn/ [31–33]). We extracted IDH-WT glioma samples
associated with survival and expression data and used
the same method of standardization by log2 (adding a
pseudocount of 0.01) for these expression datasets, and
classification was subsequently achieved using a KNN
trained with TCGA data and using identified gene signa-
tures (see Additional file 3: Figure S3).

Estimation of the immune cell composition
The Timer2 web server (http://timer.cistrome.org/ [34,
35]) was used to infer the relative representation of the
different hematopoietic cells present within each glioma
sample. This web-based tool uses the immunedeconv R
package [36] which regroups six immune estimation al-
gorithms: TIMER [37], Cibersort [38], Epic [39], quanTI-
seq [40], xCell [41], and MPC-counter [42]. In this
project, immune cell estimation values generated by
Cibersort, Epic, and quanTIseq allowed the comparison
between each immune cell type within the same sample.
Statistical significance was determined using the Mann-
Whitney U test with p < 0.05 as a threshold for at least
two of the three tools.

Statistical analysis
The enrichment analysis was performed using a chi-
square test or a Fisher exact test. The Cramer test was
used to measure the association between the cluster type
and histological variables (tumor type and grade). Statis-
tical differences between expression and histological var-
iables were evaluated using the non-parametric Mann-
Whitney U test. Log-rank tests were used for compari-
son of survival between tumor types. Univariate and
multivariate Cox regressions were performed to validate
gene signature independence using “survminer” R pack-
age [24].

Results
Global profiling of IDH-WT glioma gene expression and
identification of a normal-like glioma cluster
To investigate the extent of variability in gene expression
of IDH-WT gliomas, we performed unsupervised clus-
tering of merged TCGA low-grade glioma (LGG-TCGA)
and glioblastoma (GBM-TCGA) gene expression data-
sets comprised of 3903 differentially expressed genes for
238 IDH-WT gliomas and 5 normal brain control tis-
sues, as depicted in Fig. 1. The heatmap generated on
this filtered dataset yielded four distinct clusters with

http://www.cgga.org.cn/
http://www.cgga.org.cn/
http://timer.cistrome.org/


Fig. 1 Unsupervised clustering of TCGA expression data associated with 243 samples. The 243 samples are composed of 238 IDH-WT gliomas
and 5 healthy samples. We used 3903 genes differentially expressed between normal and tumor samples in this analysis, and the clustering
ordering was performed using a Pearson correlation
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specific gene expression patterns (blue, n = 14; red, n =
52; green n = 165; orange n = 7). All five normal tissues
classifed with blue cluster tumors were thus renamed
“normal-like” (NL), while the red, green, and orange
clusters were pooled into one group identified as “other
tumors” (OT).
In previous studies, TCGA and Ceccarelli et al. ana-

lyzed and identified different clusters from TCGA
data [17, 43]. These tumor categories were derived
using the whole TCGA dataset, composed of hetero-
geneous data such as RNA-seq, methylation, miRNA,
and copy number data for IDH-WT and IDH-mutant
gliomas. For TCGA study, molecular subcategories
were the following: R1–R4 (RNAseqClusters), M1–M5
(MethylationClusters), mi1–mi4 (miRNAClusters), and
C1–C3 (CNClusters). For the Ceccarelli study, these
included LGr1–4 (Pan-Glioma RNA expression Clus-
ters) and LGm1–6 (Pan-Glioma DNA methylation
Clusters).
After identifying four main clusters with the un-

supervised clustering of the IDH-WT glioma expres-
sion data (Fig. 1), we investigated whether these
clusters corresponded to clusters identified in previ-
ous studies. The comparison between our clusters de-
fined on RNA-seq data and clusters previously
defined in TCGA and Ceccarelli studies is described
in Fig. 2a. As compared to the partial data available
in TCGA study, the majority of gliomas associated
with the NL cluster were classified as R4 (11/11), M1
(7/11), mi1 (9/11), and C1 (8/10) whereas the OT
cluster was heterogeneously composed of R2 (42/42),
M4 (42/46), mi2–4 (14/47, 10/47, 11/47, and 12/47,
respectively), and C2 (37/47) tumors. For the Ceccar-
elli study, the NL cluster was essentially enriched in
LGr2 (12/14) and LGm6-GBM (9/14) classes whereas
the LGr4 (187/223) and LGm4–6 (62/193, 100/193,
and 30/193, respectively) classes were distributed uni-
formly in the OT cluster. These results and the asso-
ciated Fisher’s exact test p values are presented in
Table 1. Altogether, these data are in keeping with
the existence of a distinct cluster of tumors showing
normal-like transcriptomic profiles which are different
from other IDH-WT gliomas. Furthermore, it con-
firms the molecular heterogeneity in these usually ag-
gressive tumors.
In addition, we compared our clusters to previous

classifications identifying gliomas with a better prog-
nosis. Two previous studies from Aibaidula and col-
leagues [44] had identified a minority of IDH-WT
gliomas associated with longer survival using the



Fig. 2 Comparison analysis with TCGA, Ceccarelli, and Aibaidula studies. a Comparison of the identified clusters with tumor subgroups identified
in TCGA and Ceccarelli studies. The color code for the different clusters is provided at the bottom of the figure. b Comparison of the IDH-WT NL
gliomas with previously published molecular glioma subgroups associated with longer survival only shows partial overlap (in green, uncommon
IDH-WT gliomas from TCGA, 2015; in blue, pilocytic astrocytoma-like subgroup from Ceccarelli et al. 2016; in pink, molecularly low-grade from
Aibaidula et al., 2017)
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same TCGA dataset [18] (LGG and GBM projects).
These atypical gliomas were respectively labeled as
“uncommon IDH-WT,” “PA-like,” and “molecularly
low-grade” in TCGA, Ceccarelli, and Aibaidula stud-
ies. Comparisons with these studies (Fig. 2b) showed
that the NL cluster identified in our analyses (n = 14)
was significantly enriched in uncommon IDH-WT (5/
14, p value = 1.78e−06), PA-like (9/14, p value = 7.47e
−10), and molecularly low-grade (6/14, p value = 1.58e
−09) tumors. However, the overlap with these previ-
ously mentioned categories was partial, with 4 cases
belonging only to the NL subgroup.
This comparison analysis showed that the NL clus-

ter possesses a specific transcript abundance profile
when compared to the OT cluster which displayed
more heterogeneous profiles (Fig. 2a). For the rest of
the study, we thus decided to characterize the
differences between the NL (n = 14) and OT tumors
(n = 224).

NL tumor purity
We verified the possibility that the normal-like profile
was related to low tumor cell density by evaluating pur-
ity with the R packages “ESTIMATE,” which is based on
the estimation of stromal and immune cell markers [22].
Indeed, the normal-like profile could possibly be ex-
plained by tumor cell dispersion in brain parenchymal
non-neoplastic cells which would, in turn, skew the ex-
pression pattern in these tumors and explain their
normal-like profile.
The NL IDH-WT tumors showed significantly in-

creased purity estimation scores when compared to OT
tumors (mean 0.93 vs 0.77; median 0.93 vs 0.78, p =
4.26e−08; Fig. 3 and Additional file 4: Table S1), thus



Table 1 Distribution of TCGA and Ceccarelli study clusters associated with normal-like (NL) and other-type (OT) IDH-WT gliomas (for
each category, only samples for which data are available were considered)

NL OT p value (Fisher’s exact test)

RNASeqCluster (n = 53 with available data) N = 11 N = 42

R2 0 (0.0%) 42 (100%) 1.31e−11

R4 11 (100%) 0 (0.0%)

MethylationCluster (n = 57 with available data) N = 11 N = 46

M1 7 (63.6%) 4 (8.7%) 3.06e−04

M4 4 (36.4%) 42 (91.3%)

miRNACluster (n = 58 with available data) N = 11 N = 47

mi1 9 (81.8%) 14 (29.8%) 1.95e−02

mi2 1 (9.1%) 10 (21.3%)

mi3 0 (0.0%) 11 (23.4%)

mi4 1 (9.1%) 12 (25.5%)

CNCluster (n = 57 with available data) N = 10 N = 47

C1 8 (80.0%) 10 (21.3%) 7.96e−04

C2 2 (20.0%) 37 (78.7%)

Pan_Glioma_RNA_Expression_Cluster (n = 237 with available data) N = 14 N = 223

LGr1 0 (0.0%) 26 (11.7%) 5.00e−04

LGr2 12 (85.7%) 4 (1.8%)

LGr3 0 (0.0%) 6 (2.7%)

LGr4 2 (14.3%) 187 (83.9%)

Pan_Glioma_DNA_Methylation_Cluster (n = 207 with available data) N = 14 N = 193

LGm1 0 (0.0%) 1 (0.5%) 1.50e−03

LGm4 3 (21.4%) 62 (32.1%)

LGm5 2 (14.3%) 100 (51.8%)

LGm6 9 (64.3%) 30 (15.5%)
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demonstrating that the transcriptomic profile of this
subgroup is minimally affected by non-neoplastic cells.

NL tumors are associated with a longer overall survival
The discovery of a NL IDH-WT subgroup associated
with a nearly normal transcriptomic profile may sug-
gest a potentially better clinical outcome. The survival
analysis showed that patients ascribed to the NL clus-
ter had a longer survival than OT patients (p = 0.052
with a log-rank test, Fig. 4). We observed a median
survival of 14.9 months for the OT group whereas the
survival rate of the NL group did not drop to 50%
survival.
Statistical differences were investigated between NL

and OT tumors for the following epidemiological vari-
ables (Table 2): age at diagnosis, gender, vital status, and
Karnofsky performance status (KPS).
OT patients were significantly older than NL patients

(p = 2.0e−02 by Wilcoxon-Mann-Whitney test) whereas
the gender was not significant between these groups. In
addition, we found that the NL group had significantly
more patients alive than the OT group (71.4% vs 24.1%,
p = 6.66e−05 with chi-square test). The KPS index was
not significantly different across the two groups.

Histological characteristics associated with the NL cluster
gliomas
Because the NL gliomas display strong differences in
their expression profiles and survival rates as compared
to OT gliomas, we decided to consider the histological
diagnoses associated with the cases in our cohort. NL
cluster tumors were exclusively comprised of grade II
(57.1%) and grade III tumors (42.9%). The OT IDH-WT
glioma category was composed of grade III (27.2%) and
grade IV gliomas (63.8%). The Cramer test, based on
chi-square statistic and which measures the degree of as-
sociation between two nominal variables, showed a
strong correlation between the group type and the grade
(p = 2.90e−12, Cramer’s V = 0.48, Fig. 5a).
Similarly, tumor histology was significantly different

between NL and OT subgroups (p = 1.07e−06, Cramer’s
V = 0.37, Fig. 5b): while NL tumors were a mixture of as-
trocytomas (42.9%), oligoastrocytomas (21.4%), and
oligodendrogliomas (35.7%), OT tumors were, for the



Fig. 3 Comparison of tumor purity estimation for NL and OT IDH-WT tumors. The tumor purity was estimated with the R package ESTIMATE.
Statistical analysis was performed with the Wilcoxon signed-rank test

Fig. 4 Kaplan-Meier survival curves for NL vs OT tumors identified in TCGA transcriptomic dataset. NL IDH-WT tumors are associated with a better
survival profile (p value < 0.05 (*); p value = 0.0052). Statistical analysis was performed with the log-rank test

Nguyen et al. BMC Medicine          (2020) 18:280 Page 7 of 18



Table 2 Epidemiological characteristics associated with the NL
and OT IDH-WT glioma clusters

IDH-WT gliomas (n = 238) NL (n = 14) OT (n = 224)

Age at diagnosis (years)

Mean 43 58.9

Standard deviation 20.8 12.8

Min 21 23

Median 40.5 60

Max 87 89

Unknown 0 9

Gender

Female 6 (42.9%) 84 (37.5%)

Male 8 (57.1%) 131 (58.5%)

Unknown 0 (0%) 9 (4%)

KPS

100 0 (0%) 17 (7.6%)

90 2 (14.3%) 20 (8.9%)

80–70 3 (21.4%) 84 (37.5%)

< 70 0 (0%) 36 (16.1%)

Unknown 9 (64.3%) 67 (29.9%)

Fig. 5 Histological distribution in NL vs OT IDH-WT gliomas. Distribution of
other IDH-WT gliomas (n = 224). Cramer’s V with the chi-square test was us
tumor grade/histology. Morphological oligoastrocytomas are included in TC
included in this cohort would be classified as astrocytomas in the 2016 cla
1p/19q alterations
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majority, histologically classified as glioblastomas
(63.8%).
Scanned slides available on TCGA platform were

reviewed for all NL tumor cases and did not reveal any
specific features which would support that they repre-
sent a specific tumor category on histological grounds.

Prevalence of common glioblastoma genetic alterations
in NL gliomas
Next, we sought to analyze the mutational and alteration
burden of this IDH-WT glioma subcategory associated
with a longer survival and enriched in low-grade tumors.
Mutation counts and genetic alterations generated in
TCGA and Ceccarelli study [43] were reanalyzed for NL
and OT tumors. We used GISTIC2 to analyze the copy
number variation data for the identification of genomic
alterations (EGFR, FGFR, MYB, MYBL, CDKN2A/B).
A lower mutational burden was detected in NL tumors

when compared to the OT tumors (p = 1.36e−05 with a
Wilcoxon-Mann-Whitney test, Fig. 6).
The prevalence of 13 alterations typically found in gli-

omas is presented in Table 3. NL tumors show a lower
prevalence for EGFR amplification (42.9% vs 88.4%, p =
8.2e−05), chr 7 gain/chr 10 loss (14.3% vs 67%, p = 2.2e
−04), TERT promoter mutation (7.1% vs 27.7%, 68.3%
tumor grade (a) and tumor histology (b) in NL gliomas (n = 14) vs
ed to measure the association between tumor type (NL/OT) and
GA dataset, as per the 2007 WHO classification of CNS tumors. Those
ssification scheme, based on the absence of IDH1/2 and



Fig. 6 Mutation and genomic alteration profile in NL vs OT tumors. Mutation burden associated with NL vs OT tumors. The log10 of the number
of single nucleotide variations (SNVs) obtained from the Ceccarelli study was counted for each type. Mann-Whitney U tests were used for the
statistical analysis
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with an unknown status, p = 4.2e−07), and CDKN2A
(35.7% vs 74.1%, p = 2.1e−03) and CDKN2B (35.7% vs
73.2%, p = 2.5e−03) deletions. Six out of 14 NL gliomas
would fulfill the most recent cIMPACT-NOW criteria
for diffuse astrocytic glioma, IDH-WT, with molecular
features of glioblastoma (grade IV). Low mutational rates
for ATRX and FGFR1 were noted in both NL and OT
tumors (0% and 3.6% for ATRX status, respectively), and
these alterations were present with the same frequency
in both groups. There was no significant difference in
the MGMT methylation status between NL and OT gli-
omas (p = 0.58). A single NL case showed a BRAF V600E
mutation. No BRAF-KIAA1649 fusions were present in ei-
ther of the subgroups. Alterations of the following genes
were only present in OT tumors: MYB (66.1% with WT
status) and MYBL1 (78.6% with WT status).

In silico identification of gene signatures for NL IDH-WT
gliomas
The strong differences displayed by the NL glioma sub-
group suggest that these patients would benefit from less
aggressive treatment. In order to identify gliomas based
on RNA-seq expression profiles, we used the k-nearest
neighbor model to identify genes that can classify with a
maximum accuracy unknown IDH-WT gliomas into the
NL and OT groups. The better the classification per-
formance of the gene signature, the better will be the
separation between NL and OT samples based on the
gene signature expression. Using the expression training
set, we tested each combination of n genes (n = 1, n = 2,
n = 3) and we selected signatures with a minimum num-
ber of genes allowing the discrimination with the best
performance. Then, we selected the best signatures and
tested them on the independent expression data (testing
set).
We identified two 2-gene signatures, amongst 4950

tested 2-gene signatures in total, allowing the classifica-
tion of the NL and OT glioma subgroups with the best
performance. These signatures are composed of the
SLC32A1 and MSR1 genes and the C5AR1 and SYT5
genes, respectively, and were associated with the best
classification performance on the training set samples.
They were validated on TCGA independent test set, in
which the best classification was attained. In contrast,
we obtained a lower performance of the test set classifi-
cation when only one of these genes was used in the
KNN model. Classification performances are shown in
Additional file 5: Figure S4.
Further characterization of these gene signatures indi-

cated that the C5AR1 and MSR1 genes were significantly



Table 3 Distribution of genomic alterations associated with normal-like (NL) and other-type (OT) tumors

IDH-WT gliomas (n = 238) NL (n = 14) OT (n = 224) p value (Fisher’s test)

TERT promoter status

Mutant 1 (7.1%) 62 (27.7%)

WT 10 (71.4%) 9 (4%) 4.2e−07

Unknown 3 (21.4%) 153 (68.3%)

Chr 7 gain/chr 10 loss

Gain chr 7 and loss chr 10 2 (14.3%) 150 (67%)

No combined CNA 11 (78.6%) 70 (31.2%) 0.00022

Unknown 1 (7.1%) 4 (1.8%)

BRAF V600E status

Mutant 1 (7.1%) 2 (0.9%)

WT 13 (92.9%) 218 (97.3%) 0.17

Unknown 0 (0%) 4 (1.8%)

BRAF-KIAA1549 fusion

Fusion 0 (0%) 1 (0.4%)

WT 14 (100%) 217 (96.9%) 1

Unknown 0 (0%) 6 (2.7%)

ATRX status

Mutant 0 (0%) 8 (3.6%)

WT 14 (100%) 212 (94.6%) 1

Unknown 0 (0%) 4 (1.8%)

EGFR

EGFR amplification 6 (42.9%) 198 (88.4%) 0.000082

EGFR deletion 0 (0%) 1 (0.4%)

WT 8 (57.1%) 24 (10.7%)

Unknown 0 (0%) 1 (0.4%)

FGFR1

FGFR1 amplification 0 (0%) 20 (8.9%) 0.61

FGFR1 deletion 1 (7.1%) 29 (12.9%)

WT 13 (92.9%) 174 (77.7%)

Unknown 0 (0%) 1 (0.4%)

CDKN2A

CDKN2A amplification 0 (0%) 6 (2.7%)

CDKN2A deletion 5 (35.7%) 166 (74.1%) 0.0021

WT 9 (64.3%) 51 (22.8%)

Unknown 0 (0%) 1 (0.4%)

CDKN2B

CDKN2B amplification 0 (0%) 7 (3.1%)

CDKN2B deletion 5 (35.7%) 164 (73.2%) 0.0025

WT 9 (64.3%) 52 (23.2%)

Unknown 0 (0%) 1 (0.4%)

MYB

MYB amplification 0 (0%) 6 (2.7%) 0.12

MYB deletion 1 (7.1%) 69 (30.8%)

WT 13 (92.9%) 148 (66.1%)
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Table 3 Distribution of genomic alterations associated with normal-like (NL) and other-type (OT) tumors (Continued)

IDH-WT gliomas (n = 238) NL (n = 14) OT (n = 224) p value (Fisher’s test)

Unknown 0 (0%) 1 (0.4%)

MYBL1

MYBL1 amplification 0 (0%) 22 (9.8%) 0.68

MYBL1 deletion 1 (7.1%) 25 (11.2%)

WT 13 (92.9%) 176 (78.6%)

Unknown 0 (0%) 1 (0.4%)

MGMT_promoter_status

Methylated 4 (28.6%) 72 (32.1%)

Unmethylated 10 (71.4%) 121 (54.0%) 0.58

Unknown 0 (0.0%) 31 (13.8%)
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overexpressed in the OT cluster (Fig. 7a) and, in general,
in higher-grade gliomas (Fig. 7b). In contrast, the
SLC32A1 and SYT5 genes were underexpressed in the
OT cluster and in higher-grade gliomas.

Validation of gene signatures with the Chinese Glioma
Genome Atlas
To further validate our results, we trained a KNN model
with TCGA data and the two selected gene signatures
independently. We then used the model to identify new
NL IDH-WT gliomas from the Chinese Glioma Genome
Atlas (CGGA, composed of 2 datasets n = 286 and n =
149 IDH-WT gliomas, respectively, Table 4). We se-
lected the NL IDH-WT gliomas identified with both
gene signatures.
Using the first CGGA dataset, 14 samples were classi-

fied as NL gliomas with both SLC32A1/MSR1 and
C5AR1/SYT5 gene signatures vs 263 OT samples. These
14 NL patients had a significantly longer survival than
the 263 OT patients (p = 0.0025; median survival > 80
months vs 13.4 months; Fig. 8a). In the second CGGA
dataset (n = 149), 6 NL gliomas were identified vs 138
OT gliomas. The survival analysis also showed a longer
survival for NL patients in this dataset (p < 0.0013; me-
dian survival > 110 months vs 12.7 months; Fig. 8b).

Validation of gene signatures using Cox regression
analysis
To confirm the prognostic prediction power of the gene
signatures, we performed univariate and multivariate
Cox regression analyses. Variables with significant en-
richment were added in the model: age, grade, EGFR
amplification, chr 7 gain/chr 10 loss, and CDKN2A and
CDKN2B deletions. One of the assumptions of the Cox
regression model is that continuous covariates have to
be in a linear form, as verified by plotting the Martingale
residuals against the continuous covariate [45]. SLC32A1
and SYT5 genes were not associated with a linear form
(see Additional file 6: Figure S5), and signatures were
consequently transformed into three categorical categor-
ies: high, medium, and low expression.
The univariate Cox regression showed that a medium

expression of the SLC32A1 gene associated with a low
expression of the C5AR1 gene was significantly associ-
ated with better prognosis (p value = 1.55e−02, Table 5),
and the multivariate regression validated that this gene
signature can be used as an independent prognostic pre-
dictor (p = 4.74e−02). Similar results were obtained with
SYT5 gene medium expression associated with low ex-
pression of the MSR1 gene (p = 1.41e−03 and p = 3.42e
−03 for the univariate and multivariate Cox regression
analyses, respectively; Table 6).

Estimation of the immune cell composition in the NL and
OT IDH-WT glioma clusters
The identification of C5AR1 and MSR1 overexpression
in the OT group may suggest differences in the NL vs
OT glioma tumor-associated immune microenviron-
ment. We thus explored this hypothesis by inferring the
immune cell composition of each glioma sample using
Cibersort (Fig. 9a), quanTIseq (Fig. 9b), and Epic
(Fig. 9c).
These analyses showed that NL gliomas were associ-

ated with a lower count of intratumoral macrophages
when compared to the OT gliomas, more specifically
with a lower M2 phenotype macrophage number (p =
3.33e−07 and p = 2.49e−09 for Cibersort and quanTIseq,
respectively; Fig. 9d). A higher density of B lymphocytes
(p = 2.75e−03, p = 9.58e−06, and p = 1.47e−09 for Ciber-
sort, quanTIseq, and Epic, respectively), NK cells (p =
1.56e−05 and p = 1.05e−04 for quanTIseq and Epic, re-
spectively), and CD8+ T lymphocytes (p = 6.49e−03 and
p = 7.65e−10 with Cibersort and Epic, respectively) when
compared to the OT gliomas was also observed.

Discussion
Our reanalysis study of TCGA glioma cohort identified
14 IDH-WT gliomas out of 238 possessing a nearly



Fig. 7 Expression levels of the C5AR1, SLC32A1, MSR1, and SYT5 genes. The boxplots show the C5AR1, SLC32A1, MSR1, and SYT5 gene expression
level related to the tumor type (a) or the tumor grade (b). The NT type (in gray) corresponds to normal tissues. Statistical analysis was calculated
with Mann-Whitney U tests (*p value < 0.05; **p value < 0.01; ***p value < 0.001)
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Table 4 Description of external glioma databases (CGGA1 and
CGGA2)

Dataset CGGA1 CGGA2

Gliomas (with RNA-seq data) 693 325

IDH-WT gliomas (with RNA-seq data) 286 149

IDH-WT gliomas (with RNA-seq data and survival data) 277 144

Nguyen et al. BMC Medicine          (2020) 18:280 Page 13 of 18
normal transcriptomic profile and associated with fewer
significantly deregulated genes than usual IDH-WT gli-
omas. These NL IDH-WT gliomas were associated with
a longer survival interval and a younger age.
They show partial overlap with previously described

IDH-WT glioma subcategories using other profiling
strategies, such as PA-like astrocytomas [43] identified
from the methylation data and which possess a tran-
scriptomic profile similar to pilocytic astrocytomas of
the posterior fossa, uncommon IDH-WT gliomas [17]
identified by cluster of cluster analysis of four data
types (mRNA, miRNA, methylation, copy number
variation), and molecularly lower-grade gliomas [44]
which are IDH-WT gliomas lacking one of these al-
terations: EGFR amplification, H3F3A, and pTERT
mutations.
The most recent cIMPACT update on IDH-WT in-

filtrating gliomas recommends upgrading of infiltrat-
ing gliomas bearing EGFR amplification and/or 7
gain/10 loss and/or TERT mutation as glioblastoma
equivalents. Our reanalysis of TCGA transcriptomic
dataset suggests the existence of a minority of infil-
trating gliomas bearing these alterations and yet sur-
viving longer than expected. These tumors do not
typically bear alterations found in pediatric gliomas
(MYB, FGFR1, BRAF V600E-mutant) either (see
Additional file 7: Table S2). This suggests that
Fig. 8 Kaplan-Meier survival curves for NL vs OT tumors identified in indep
identified in the first (a) and the second (b) CGGA datasets using the SLC3
performed using a log-rank test
transcriptomic profiling could be used as a comple-
mentary method in diagnosing and predicting the
outcome for IDH-WT gliomas with unclear histo-
logical grading.
The KNN machine learning model supplemented with

specific gene filtration steps identified 2-gene expression
signatures that detect NL IDH-WT gliomas associated
with a significantly longer survival with good perform-
ance. The first gene signature was composed of
SLC32A1 and MSR1 genes and the second of C5AR1
and SYT5 genes.
The SLC32A1 gene codes for a gamma-aminobutyric

acid (GABA) and glycine vesicular transporter. GABA is
the main synaptic inhibitory neurotransmitter in the ma-
ture human central nervous system. It has been shown
that endogenous GABA has an inhibitory effect on gli-
oma cell proliferation and migration during brain devel-
opment [46].
The SYT5 gene codes for synaptotagmin 5 which is

a membrane protein with a role in neurosecretory
vesicle recruitment and exocytosis following cell
depolarization and calcium entry. Its involvement in
gliomagenesis remains unclear, but it does play a cen-
tral role in brain neurotransmission [47, 48]. Interest-
ingly, recent work shows that gliomas “hijack”
glutaminergic signaling to promote their growth and
progression through membrane electric potential fir-
ings. Aberrant GABAergic signaling may serve as a
deleterious defect that reduces this electrical activity
in glioma cells and counteracts their aggressive biol-
ogy [49, 50].
The C5AR1 gene, coding for the G protein-coupled re-

ceptor for complement component 5a, plays an important
role in the innate immunity regulation and tolerance and
may be linked to immune checkpoints, as they relate to
endent datasets. Kaplan-Meier survival curves for NL vs OT tumors
2A1/MSR1 and C5AR1/SYT5 gene signatures. Statistical analysis was



Table 5 Univariate and multivariate Cox regression model associated with the SLC32A1/MSR1 gene signature

Characteristics Univariate Cox regression Multivariate Cox regression

Beta HRa (95% CIb for HR) p value Beta HRa (95% CIb for HR) p value

Age 0.034 1.035 (1.021–1.048) 6.75e−07 0.02 1.020 (1.004–1.037) 1.42e−02

Gender

Female Reference

Male 0.325 1.384 (0.991–1.932) 5.65e−02 0.073 1.076 (0.756–1.531) 6.83e−01

Grade

G2 Reference

G3 0.883 2.419 (0.850–6.881) 9.77e−02 0.547 1.728 (0.576–5.187) 3.29e−01

G4 1.75 5.752 (2.113–15.660) 6.18e−04 1.186 3.273 (1.045–10.250) 4.18e−02

EGFR

Amplification Reference

WT − 0.888 0.412 (0.223–0.761) 4.64e−03 − 0.337 0.714 (0.328–1.555) 3.96e−01

CDKN2A

CDKN2A deletion Reference

CDKN2A WT − 0.702 0.496 (0.332–0.741) 6.13e−04 − 1.691 0.184 (0.023–1.472) 1.11e−01

CDKN2B

CDKN2B deletion Reference

CDKN2B WT − 0.653 0.520 (0.350–0.774) 1.25e−03 1.276 3.584 (0.465–27.617) 2.21e−01

`Chr 7 gain/chr 10 loss

`Chr 7 gain/chr 10 loss combined CNA Reference

`Chr 7 gain/chr 10 loss no combined CNA − 0.381 0.683 (0.482–0.968) 3.20e−02 0.022 1.023 (0.682–1.533) 9.14e−01

SLC32A1/MSR1 signature

SLC32A1_low–MSR1_low − 0.172 0.842 (0.385–1.842) 6.67e−01 0.304 1.355 (0.568–3.233) 4.94e−01

SLC32A1_medium–MSR1_low − 0.91 0.403 (0.193–0.841) 1.55e−02 − 0.801 0.449 (0.203–0.991) 4.74e−02

SLC32A1_high–MSR1_low − 0.766 0.465 (0.283–0.762) 2.41e−03 0 1.000 (0.554–1.808) 9.99e−01

SLC32A1_low–MSR1_high 0.136 1.145 (0.728–1.800) 5.57e−01 − 0.109 0.897 (0.552–1.456) 6.60e−01

SLC32A1_medium–MSR1_high − 0.149 0.862 (0.566–1.313) 4.89e−01 − 0.084 0.920 (0.584–1.448) 7.18e−01
aHazard ratio
bConfidence interval
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lung cancers. C5a complement proteins have also
been shown to regulate cancer cell migration, prolif-
eration, and angiogenesis [51, 52]. PD-1 (programmed
death-1) and its ligand PD-L1 are known drug targets
in lung adenocarcinoma and melanoma [53, 54]. The
proposed mechanism involves the reactivation of cyto-
toxic T cells following neoplastic antigen recognition.
A synergistic effect of PD-1/PD-L1 and C5A pathways
has been proposed and might represent a novel target
in potentiating immunity in different cancers, includ-
ing gliomas [55].
The class A macrophage scavenger receptor (MSR1 or

CD204 gene) is expressed by tumor-associated M2 mac-
rophages that induce tumor progression and angiogen-
esis by suppressing immunity in the tumor
microenvironment [56]. The discovery of CD204 under-
expression in normal-like IDH-WT is in line with
findings from other studies, supporting the notion that
CD204 expression is correlated with worse survival in
cancer, including IDH-WT gliomas [57–59].
The C5A G protein-coupled receptor 1 is known to be

expressed on immune cells (such as T cells and macro-
phage [60]) and on non-myeloid cells (reactive astrocyte,
microglia [61, 62]). Activation of this membrane recep-
tor by the C5A ligand has been linked to an increase of
the M2 phenotype macrophage population in tumor
[63]. This macrophage subpopulation, which also ex-
presses MSR1 receptors, is well known for its pro-
tumoral properties in infiltrating gliomas [64]. C5A1 re-
ceptor activation is also associated with decreased NK
and CD4+/CD8+ T cell responses, known for their pro-
inflammatory and anti-tumoral effects [65, 66]. This re-
sults in an immunotolerant tumor microenvironment
that favors infiltrating glioma progression.



Table 6 Univariate and multivariate Cox regression model associated with the SYT5/C5AR1 gene signature

Characteristics Univariate Cox regression Multivariate Cox regression

Beta HRa (95% CIb for HR) p value Beta HRa (95% CIb for HR) p value

Age 0.034 1.035 (1.021–1.048) 6.75e−07 0.022 1.023 (1.006–1.039) 5.90e−03

Gender

Female Reference

Male 0.325 1.384 (0.991–1.932) 5.65e−02 0.165 1.179 (0.823–1.689) 3.69e−01

Grade

G2 Reference

G3 0.883 2.419 (0.850–6.881) 9.77e−02 0.557 1.745 (0.587–5.189) 3.16e−01

G4 1.75 5.752 (2.113–15.660) 6.18e−04 0.901 2.461 (0.820–7.389) 1.08e−01

EGFR

Amplification Reference

WT − 0.888 0.412 (0.223–0.761) 4.64e−03 − 0.391 0.677 (0.314–1.459) 3.19e−01

CDKN2A

CDKN2A deletion Reference

CDKN2A WT − 0.702 0.496 (0.332–0.741) 6.13e−04 − 1.903 0.149 (0.018–1.212) 7.51e−02

CDKN2B

CDKN2B deletion Reference

CDKN2B WT − 0.653 0.520 (0.350–0.774) 1.25e−03 1.399 4.053 (0.511–32.157) 1.85e−01

`Chr 7 gain/chr 10 loss

`Chr 7 gain/chr 10 loss combined CNA Reference

`Chr 7 gain/chr 10 loss no combined CNA − 0.381 0.683 (0.482–0.968) 3.20e−02 0.006 1.006 (0.673–1.502) 9.78e−01

SYT5/C5AR1 signature

SYT5_low–C5AR1_low − 0.646 0.524 (0.250–1.100) 8.77e−02 − 0.536 0.585 (0.271–1.266) 1.73e−01

SYT5_medium–C5AR1_low − 0.858 0.424 (0.250–0.718) 1.41e−03 − 0.836 0.434 (0.248–0.759) 3.42e−03

SYT5_high–C5AR1_low − 0.668 0.513 (0.312–0.843) 8.47e−03 − 0.325 0.722 (0.397–1.313) 2.86e−01

SYT5_low–C5AR1_high − 0.223 0.800 (0.453–1.414) 4.43e−01 − 0.437 0.646 (0.349–1.197) 1.65e−01

SYT5_medium–C5AR1_high − 0.081 0.922 (0.600–1.418) 7.13e−01 − 0.211 0.810 (0.506–1.296) 3.79e−01
aHazard ratio
bConfidence interval
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Overall, we envisage that the lower expression of
C5AR1 in NL gliomas, by impacting negatively on
MSR1-expressing M2 phenotype macrophages and posi-
tively on NK and CD4+/CD8+ T cells, favors anti-
inflammatory and anti-tumoral cell signaling cascades.
This would result in diminished aggressivity.
These findings may suggest the presence of an immuno-

logical advantage in atypical NL IDH-WT gliomas which
would impact negatively on neoplastic progression. Al-
tered GABA and calcium-signaling events may also par-
ticipate. Furthermore, the correlation of SLC32A1/MSR1
and C5AR1/SYT5 gene signatures with survival could po-
tentially translate into clinical practice as a personalized
protein or nucleic acid-based predictive tool which com-
plements the actual work-up (EGFR amplification, TERT
promoter mutation, chr 7 gain/chr 10 loss, and MGMT
promoter methylation) in predicting aggressive behavior
for IDH-WT infiltrating gliomas and would ensure better
patient care.
Recent findings showed the formation of chemical

synapses between GBM tumor cells and non-neoplastic
cells in the surrounding tumor microenvironment that
provide a direct mean of regulating cell invasiveness
[67], following the release of the amino acid transmitter
glutamate, which happens to be a GABA precursor. It
will be interesting to further decipher the signaling ele-
ments involved in these novel cancer-controlling pro-
cesses, beyond classical ion fluxes and channel openings,
and to integrate the metabolic nature of these amino
acids in the overall picture.

Conclusion
In summary, this reanalysis of TCGA IDH-WT glioma
expression dataset identified a subgroup of IDH-WT



Fig. 9 Immune cell type distribution in NL vs OT tumors. Distribution of the immune cell types in NL and OT tumors estimated with Cibersort (a),
quanTIseq (b), and Epic (c) software. Statistical analysis was calculated with Mann-Whitney U tests (d), and the p values which are significant
(< 0.05) are highlighted in pink
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gliomas with an almost normal transcriptomic profile
and a longer survival. These NL IDH-WT gliomas,
which tend to occur in younger patients, bear fewer gen-
omic mutations and alterations such as EGFR amplifica-
tions, chromosome 7/10 alterations, and TERT
mutations although some would still qualify as diffuse
astrocytic glioma with molecular features of glioblastoma
(WHO grade IV). A machine learning-based approach
identified C5AR1/SYT5 and MSR1/SLC32A1 signatures
which were able to discriminate NL IDH-WT gliomas
with high sensitivity and specificity in various glioma ex-
pression datasets. In addition to offering some patients a
better outlook, these novel transcriptional patterns could
offer clues to the development of emerging therapies fo-
cused on targeting immune checkpoints and amino acid
signaling in gliomas.
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